#SWMM5 Bio-Retention Cell LID Reference Values

Bio-Retention Cell LID Reference Values

Excerpt from the EPA manual Storm Water Management Model Reference Manual Volume III – Water Quality (PDF) which can be found here

6.5 Parameter Estimates

The variety of LID controls modeled by SWMM introduces a significant number of design variables and parameters that must be assigned values by the user. These include sizing parameters (surface area, layer depths, and capture ratio), surface parameters (freeboard depth, outflow face width, slope, and roughness), soil parameters (moisture limits and hydraulic conductivity), pavement parameters (void ratio and permeability), storage parameters (void ratio and native soil conductivity), drain parameters (discharge coefficient and exponent, roof drain capacity, and drain mat roughness), and clogging parameter. Because of the high interest and acceptance of LID, many local and state agencies have prepared design manuals that recommend ranges for many key parameters. Table 6-1 lists a selection of these manuals, all available online. Unless otherwise noted, these manuals served as the source of the LID parameter values described in the sub-sections that follow.

6.5.1 Bio-Retention Cells and Rain Gardens Parameter Values

Table 6-2 lists ranges of parameter values for bio-retention cells and rain gardens, expressed in their typical US units of inches and hours. They are internally converted to feet and seconds for use in the governing conservation equations.

Table 6-1 Design manuals used as sources for LID parameter values

Organization Manual Title Year URL
Prince Georges County Maryland Low-Impact Development Design: An Integrated Design Approach 1999 http://water.epa.gov/polwaste/green/upload/lidnatl.pdf
Denver Urban Drainage and Flood Control District Urban Storm Drainage Criteria Manual, Volume 3 Best Management Practices 2010 http://udfcd.org/wp-content/uploads/uploads/vol3%20criteria%20manual/USDCM%20Volume%203.pdf
Toronto and Region Conservation Authority Low Impact Development Stormwater Management Planning and Design Guide 2010 http://www.creditvalleyca.ca/wp-content/uploads/2014/04/LID-SWM-Guide-v1.0_2010_1_no-appendices.pdf
Washington State University Extension Low Impact Development Technical Guidance Manual for Puget Sound 2012 http://www.psp.wa.gov/downloads/LID/20121221_LIDmanual_FINAL_secure.pdf
District of Columbia Stormwater Management Guidebook 2013 http://doee.dc.gov/swguidebook
Philadelphia Water Department Stormwater Management Guidance Manual, Version 2.1 2014 http://www.pwdplanreview.org/upload/pdf/Full%20Manual%20%28Manual%20Version%202.1%29. pdf
University of New Hampshire Stormwater Center UNHSC Design Specifications for Porous Asphalt Pavement and Infiltration Beds 2014 http://www.unh.edu/unhsc/sites/unh.edu.unhsc/files/pubs_specs_info/unhsc_pa_spec_10_09.pdf
NY State Department of Environmental Conservation Stormwater Management Design Manual 2015 http://www.dec.ny.gov/docs/water_pdf/swdm2015entire.pdf

Table 6-2 Typical ranges for bio-retention cell parameters

Parameter Range
Maximum Freeboard, inches (D1) 6 – 12
Surface Void Fraction (f1) 0.8 – 1.0
Soil Layer Thickness, inches (D2) 24 – 48
Soil Properties:
Porosity (f2) 0.45 – 0.6
Field Capacity (qFC) 0.15 – 0.25
Wilting Point (qWP) 0.05 – 0.15
Saturated Hydraulic Conductivity, in/hr (K2S) 2.0 – 5.5
Wetting Front Suction Head, inches (y2) 2 – 4
Percolation Decay Constant (HCO) 30 – 55
Storage Layer Thickness, inches (D3) 6 – 36
Storage Void Fraction (f3) 0.2 – 0.4
Capture Ratio (RLID) 5 – 15

Table 6-3 Soil characteristics for a typical bio-retention cell soil

Soil Property Value
Porosity (f2) 0.52
Field Capacity (qFC) 0.15
Wilting Point (qWP) 0.08
Saturated Hydraulic Conductivity, in/hr (K2S) 4.7
Percolation Decay Constant (HCO) 39.3
Wetting Front Suction Head, inches (y2 = 3.23(K2S)-0.328) 1.9

Leave a Reply